Professor Daniel Ken Inaoka
Speciality / Research theme / Keywords
Tumour Biology, Molecular Biology, Structural Biology, Medicinal Chemistry, ParasitologySupervision
Masters ProgrammeDoctoral ProgrammeQualifications
PhD, Pharmaceutical Sciences
Research gate account links
https://www.researchgate.net/profile/Daniel_Inaoka
Affiliation(s)
Department of Molecular Infection Dynamics, Institute of Tropical Medicine, Nagasaki University
Visiting Researcher, Department of Biomedical Chemistry, School of International Health, Graduate School of Medicine, The University of Tokyo
Background
I was born and lived 21 years in Brazil, an endemic country for Chagas disease and Leishmaniasis. I studied at the Faculty of Pharmacy from Universidade Federal do Rio Grande do Norte. In 2000, I came to Japan and under the support of Mombukagakusho Scholarship I obtained Master and PhD degree in Pharmaceutical Sciences at Graduate School of Pharmaceutical Sciences, The University of Tokyo. During my Master and Doctoral course I have analyzed the biochemical and structural biological properties of dihydroorotate dehydrogenase, a potential drug target from Trypanosoma cruzi involved in pyrimidine de novo biosynthesis. In 2005, I moved to Graduate School of Medicine, The University of Tokyo supported by Postdoctoral Fellowships for Foreign Researchers (JSPS) to start research in structural biology and drug design targeting the unique energy metabolism found in Trypanosomatids and Helminthes. Since 2007, I become Assistant Professor of Department of Biomedical Chemistry from Graduate School of Medicine at The University of Tokyo to research molecular and biochemical parasitology and drug design targeting enzymes involved in microaerophilic mitochondrial metabolism from protozoan parasites and helminthes. I have expertise in the field of biochemistry, parasite metabolism, structural biology and drug design.
Teaching
I worked as part-time lecturer for practical class in biophysics at Teikyo University, between 2002 and 2005. I was also in charge of practical class in biochemistry at School of International Health, The University of Tokyo, from 2007 to 2016. At TMGH, Nagasaki University, I will be teaching part of Basic Human Biology coordinated by Prof. Kita and Prof. Kamiya.
Research
Based in keywords such as “Parasite”, “Mitochondria”, “Host Environment Adaptation”, “Ubiquinone”, “Energy Metabolism”, “Biochemistry”, “Drug Target” and “Drug Development”, my current research area include Trypanosomatids and Apicomplexan parasites, Helminthes and Tumor Microenvironment.
The country/countries where you work currently
- Japan
- Indonesia
- El Salvador
Five MOST IMPORTANT/INTERESTING recent publications
- Enkai S, Kouguchi H, Inaoka DK, Shiba T, Hidaka M, Matsuyama H, Sakura T, Yagi K, Kita K. Killing Two Birds with One Stone: Discovery of Dual Inhibitors of Oxygen and Fumarate Respiration in Zoonotic Parasite, Echinococcus multilocularis. Antimicrob Agents Chemother. e0142822, 2023.
- Kabongo A T, Acharjee R, Sakura T, Bundutidi GM, Hartuti E D, Davies C, Gundogdu O, Kita K, Shiba T, Inaoka DK. Biochemical characterization and identification of ferulenol and embelin as potent inhibitors of malate:quinone oxidoreductase from Campylobacter jejuni. Front Mol Biosci. 10, 1095026, 2023.
- Komatsuya K, Sakura T, Shiomi K, Omura S, Hikosaka K, Nozaki T, Kita K, Inaoka DK. Siccanin Is a Dual-Target Inhibitor of Plasmodium falciparum Mitochondrial Complex II and Complex III. Pharmaceuticals (Basel). 15, 2022.
- Hidayati A R, Melinda, Ilmi H, Sakura T, Sakaguchi M, Ohmori J, Hartuti E D, Tumewu L, Inaoka DK, Tanjung M, Yoshida E, Tokumasu F, Kita K, Mori M, Dobashi K, Nozaki T, Syafruddin D, Hafid A F, Waluyo D, Widyawaruyanti A. Effect of geranylated dihydrochalcone from Artocarpus altilis leaves extract on Plasmodium falciparum ultrastructural changes and mitochondrial malate: Quinone oxidoreductase. International Journal for Parasitology: Drugs and Drug Resistance. 21:40-50, 2023.
- Talaam KK, Inaoka DK, Hatta T, Tsubokawa D, Tsuji N, Wada M, Saimoto H, Kita K, Hamano S. Mitochondria as a Potential Target for the Development of Prophylactic and Therapeutic Drugs against Schistosoma mansoni Infection. Antimicrob Agents Chemother. 65, e0041821, 2021.